General Upper Bounds for Gate Complexity and Depth of Reversible Circuits Consisting of NOT, CNOT and 2-CNOT Gates
نویسنده
چکیده
В работе рассматривается вопрос сложности и глубины обратимых схем, состоящих из функциональных элементов NOT, CNOT и 2-CNOT, в условиях ограничения на количество используемых дополнительных входов. Изучаются функции Шеннонa сложности L(n, q) и глубины D(n, q) обратимой схемы, реализующей отображение f : Z2 → Z n 2 , при условии, что количество дополнительных входов q находится в диапазоне 8n < q . n2. Доказываются верхние оценки L(n, q) . 2 + 8n2 /(log2(q − 4n) − log2 n − 2) и D(n, q) . 2(2, 5+ log2 n− log2(log2(q−4n)− log2 n−2)) для указанного диапазона значений q. The paper discusses the gate complexity and the depth of reversible circuits consisting of NOT, CNOT and 2-CNOT gates in the case, when the number of additional inputs is limited. We study Shannon’s gate
منابع مشابه
On Asymptotic Gate Complexity and Depth of Reversible Circuits Without Additional Memory
Reversible computation is one of the most promising emerging technologies of the future. The usage of reversible circuits in computing devices can lead to a significantly lower power consumption. In this paper we study reversible logic circuits consisting of NOT, CNOT and 2-CNOT gates. We introduce a set F (n, q) of all transformations Zn2 → Z n 2 that can be implemented by reversible circuits ...
متن کاملOn Synthesis of Reversible Circuits with Small Number of Additional Inputs Consisting of NOT, CNOT and 2-CNOT Gates
В работе рассматривается вопрос сложности обратимых схем, состоящих из функциональных элементов NOT, CNOT и 2-CNOT и имеющих малое число дополнительных входов. Изучается функцииШеннонa сложности L(n, q) обратимой схемы, реализующей отображение f : Zn2 → Z n 2 , при условии, что количество дополнительных входов q 6 O(n). Доказывается оценка L(n, q) ≍ n2n / log 2 n для указанного диапазона значен...
متن کاملAsymptotic bounds of depth for the reversible circuit consisting of NOT, CNOT and 2-CNOT gates
The paper discusses the asymptotic depth of a reversible circuit consisting of NOT, CNOT and 2-CNOT gates. Reversible circuit depth function $D(n, q)$ for a circuit implementing a transformation $f\colon \mathbb Z_2^n \to \mathbb Z_2^n$ is introduced as a function of $n$ and the number of additional inputs $q$. It is proved that for the case of implementing a permutation from $A(\mathbb Z_2^n)$...
متن کاملOn Asymptotic Gate Complexity and Depth of Reversible Circuits With Additional Memory
The reversible logic can be used in various research areas, e. g. quantum computation, cryptography and signal processing. In the paper we study reversible logic circuits with additional inputs, which consist of NOT, CNOT and C2NOT gates. We consider a set F (n, q) of all transformations Bn → Bn that can be realized by reversible circuits with (n+q) inputs. An analogue of Lupanov’s method for t...
متن کاملThe normal form of reversible circuits consisting of CNOT and NOT gates
This paper deals with the reversible circuits with n input and output nodes, consisting of the reversible gates FAN-IN=FAN-OUT≤ 2. We define a normal form of such type of circuits and describe a reduction algorithm to transform a circuit in this form. Furthermore we use it for checking whether two circuits are equivalent to each other without evaluating them.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1702.08045 شماره
صفحات -
تاریخ انتشار 2017